Author:
Choubin Bahram,Borji Moslem,Hosseini Farzaneh Sajedi,Mosavi Amirhosein,Dineva Adrienn A.
Abstract
AbstractSnow avalanche is among the most harmful natural hazards with major socioeconomic and environmental destruction in the cold and mountainous regions. The devastating propagation and accumulation of the snow avalanche debris and mass wasting of surface rocks and vegetation particles threaten human life, transportation networks, built environments, ecosystems, and water resources. Susceptibility assessment of snow avalanche hazardous areas is of utmost importance for mitigation and development of land-use policies. This research evaluates the performance of the well-known machine learning methods, i.e., generalized additive model (GAM), multivariate adaptive regression spline (MARS), boosted regression trees (BRT), and support vector machine (SVM), in modeling the mass wasting hazard induced by snow avalanches. The key features are identified by the recursive feature elimination (RFE) method and used for the model calibration. The results indicated a good performance of the modeling process (Accuracy > 0.88, Kappa > 0.76, Precision > 0.84, Recall > 0.86, and AUC > 0.89), which the SVM model highlighted superior performance than others. Sensitivity analysis demonstrated that the topographic position index (TPI) and distance to stream (DTS) were the most important variables which had more contribution in producing the susceptibility maps.
Publisher
Springer Science and Business Media LLC
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献