Fusion Method Evaluation and Classification Suitability Study of Wetland Satellite Imagery

Author:

Zhu Danyao,Wan Luhe,Gao Wei

Abstract

Based on HJ-1A HSI data and Landsat-8 OLI data, RS image fusion experiments were carried out using three fusion methods: principal component (PC) transform, Gram Schimdt (GS) transform and nearest neighbor diffusion (NND) algorithm. Four evaluation indexes, namely mean, standard deviation, information entropy and average gradient, were selected to evaluate the fusion results from the aspects of image brightness, clarity and information content. Wetland vegetation was classified by spectral angle mapping (SAM) to find a suitable fusion method for wetland vegetation information extraction. The results show that PC fusion image contains the largest amount of information, GS fusion image has certain advantages in brightness and clarity maintenance, and NND fusion method can retain the spectral characteristics of the image to the maximum extent; Among the three fusion methods, PC transform is the most suitable for wetland information extraction. It can retain more spectral information while improving spatial resolution, with classification accuracy of 89.24% and Kappa coefficient of 0.86.

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

Reference14 articles.

1. Adam, E., Mutanga, O., Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecology and Management, 18, 281-296.

2. Dong, Q. L., Lin, H., Sun, H., Qiu, L., & Zhang, Y. (2013). Application of multi-source remote sensing data fusion method in wetland classification. Journal of Central South University of Forestry and Technology, 33(1), 52-57.

3. Fusun, B. S., Saygin, A., Mustafa, T. E., & Filiz, S. (2017). Evaluation of image fusion methods using PALSAR, RADARSAT-1 and SPOT images for land use/ land cover classification. Journal of the Indian Society of Remote Sensing, 45(4), 591-601.

4. Gao, L. (2015). Landsat8 OLI remote sensing image fusion based on the nearest neighbor diffusion method. Proceedings of the 2015 Annual Conference of Jiangsu Surveying and Mapping Geographic Information Society.

5. Ma, X. X. & Wang, J. L. (2016). The basic research of phase retrieval algorithm. Optik-International Journal for Light & Electron Optics, 127(4), 1561-1566.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3