Vertical accuracy evaluation free access digital elevation models (DEMs): case Fergana Valley in Uzbekistan

Author:

Fazilova Dilbarkhon,Arabov Obidjon

Abstract

In this study, the vertical accuracy of the Shuttle Radar Topography Mission Digital Elevation Model Version 2.0 (SRTM30), the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM Version 2.0 (ASTER GDEM2), and Advanced Land Observing Satellite World 3D Digital Surface Model Version 2.1 (ALOS AW3D30) was statistically assessed using GPS data. The Fergana Valley area was chosen as a study region, where the land surface can reflect tectonic processes. The values of ellipsoidal heights of 27 points of the regional GPS network were chosen as reference data. The geometric approach using GPS/leveling data and EGM96 global geopotential model-based geoid undulations was applied for geoid surface fitting. The geoid height corrections range ranged from –0.66 m to 0.87 m. Root-Mean-Square errors of ~10.0 m, ~16.4 m, and ~6.6 m was obtained for SRTM30, ASTER GDEM2, and ALOS AW3D30, respectively. It was found that compared with the reference model, all the global DEMs in mountainous areas generally overestimated elevation and the value of vertical accuracy at a 90% confidence level by 3-6 meters exceeded the declared by distributors. But ALOS AW3D30 proved to be the most accurate DEM that best represents the topography of the earth’s surface and could be used for some engineering applications in Fergana Valley.

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3