Utilization of geographically weighted regression for geoid modelling in Egypt

Author:

Dawod Gomaa M.1,Abdel-Aziz Tarek M.1

Affiliation:

1. Survey Research Institute, National Water Research Center, Giza, Egypt

Abstract

AbstractModelling the spatial variations of a specific Global Geopotential Model (GGM) over a spatial area is important to enhance its local performance in Global Navigation Satellite Systems (GNSS) surveying. This study aims to investigate the potential of utilizing some of Geographic Information Systems (GIS) geospatial analysis tools, particularly Geographically Weighted Regression (GWR), in geoid modelling for the first time in Egypt as a case study. Its main target is developing an optimum regression method to be applied in spatial modelling of the deviations of a specific GGM (e. g., PGM17). Using a precise local geodetic dataset of 803 GPS/levelling stations, PGM17 undulation differences have been modelled using different regression techniques to evaluate their precision and accuracy. Based on investigating 13 possible regression formulas of probable combinations of independent variables, results showed that the PGM17 discrepancies over Egypt depend mostly on the terrain heights and geoidal undulations. Over 80 checkpoints, the attained variations between the GWR model and known values varied from −0.574 m to 0.500 m, with a mean of 0.001 m and a standard deviation equals ±0.205 m. Based on available data, it has been found that GWR improved the PGM17 deviations by 9 % in terms of standard deviation and by 98 % in terms of the mean. Additionally, the study generates a reasonably innovative product for the local geodetic community by building an enhanced version of the PGM17. This surface will be a precious resource in GNSS surveying in Egypt for heights conversion, leading to considerable cost reduction in civil engineering works and mapping projects.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3