Effect of drying parameters on the physicochemical, microbiological, and sensory properties of lemon balm (Melissa officinalis L.)

Author:

Trujillo-Echeverria LeninORCID,Pinanjota Guaytarilla Henry GabrielORCID,Lara Fiallos Marco VinicioORCID

Abstract

Lemon balm (Melissa officinalis L.) has been recognized for multiple health benefits due to bioactive compounds. Dehydration is usually the most widely used method to preserve and concentrate these elements. However, it can also affect and totally or partially degrade the quality of the product under incorrect processing conditions. This research aimed to evaluate the effect of drying parameters on Melissa’s physicochemical, microbiological, and sensory properties. In total, four treatments were analyzed according to the experimental design (T1: 25 °C and 1.5 m s-1, T2: 25 °C and 3.0 m s-1, T3: 45 °C and 1.5 m s-1, and T4: 45 °C and 3.0 m s-1). Drying kinetics were determined using a vertical airflow dryer and a continuous weighing system. The results were compared with fresh leaves. The findings obtained show that increasing temperature and varying drying speed reduces moisture content and aw but increases enzymatic activity and essential oil content. In the drying process, temperature has a greater effect in the initial stages of the process, while drying speed on the internal structure of the raw material. By optimizing the drying conditions, it is possible to reduce the drying time by 44%. Page’s model showed excellent ability to predict drying kinetics under various drying conditions (RMSE <0.04 and R2>0.98). In terms of color, lightness decreased because of temperature, while a* and b* values were affected by non-enzymatic browning. Treatment T4 was the product with the highest acceptability. The findings obtained provide a theoretical basis to optimize the lemon balm drying process. Drying Melissa at 45 °C and 3.0 m s-1 can improve the quality and composition of the final product.

Publisher

Universidad Nacional de Colombia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3