Effect of hydrogen embrittlement on the characteristics of copper-based shape memory alloy

Author:

Prashantha S.,Auradi Virupaxi,Nagral Mahadev,Patil Shanawaz

Abstract

Because of the good shape memory effect and superelasticity, copper-based shape memory alloys (SMAs) with aluminum and beryllium as binary and ternary elements are widely used in many applications (Cu-Al-Be SMAs). However, they are prone to corrosion in atmospheric conditions. This alloy is susceptible to corrosion due to hydrogen. This affects the characterization of the SMAs by absorbing the hydrogen and results in hydrogen embrittlement, makes changes in SME and SE effect. The process of hydrogen absorption was carried out under electrolytic charging under constant current density and the charged specimens were aged in the air at room temperature. The results show the decrement in SME from 99.8 % to 62%, and the tensile test revealed an increment in the transformation stress level from 200MPa- 290MPa in the case of the charged specimen.

Publisher

Informatics Publishing Limited

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology,Fuel Technology

Reference14 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3