Mapping Sandy Areas and their changes using remote sensing. A Case Study at North-East Al-Muthanna Province, South of Iraq

Author:

Sahar Awad A.,Rasheed Muaid J.,Uaid Dhia A. A.-H.,Jasim Ammar A.ORCID

Abstract

<p>Sandy areas are the main problem in regions of arid and semi-arid climate in the world that threaten urban life, buildings, agricultural, and even human health. Remote sensing is one of the technologies that can be used as an effective tool in dynamic features study of sandy areas and sand accumulations. In this study, two new indices were developed to separate the sandy areas from the non-sandy areas. The first one is called the Normalized Differential Sandy Areas Index (NDSAI) that has been based on the assumption that the sandy area has the lowest water content (moisture) than the other land cover classes. The second other is called the Sandy Areas Surface Temperature index (SASTI) which was built on the assumption that the surface temperature of sandy soil is the highest. The results of proposed indices have been compared with two indices that were previously proposed by other researchers, namely the Normalized Differential Sand Dune Index NDSI and the Eolain Mapping Index (EMI). The accuracy assessment of the sandy indices showed that the NDSAI provides very good performance with an overall accuracy of 89 %. The SASTI can isolate many sandy and non-sandy pixels with an overall accuracy about 86 %. The performance of the NDSI is low with an overall accuracy about 82 %. It fails to classify or isolate the vegetation area from the sandy area and might have better performance in desert environments. The performing of NDSAI that is calculated with the SWIR1 band of the Landsat satellite is better than the performing of NDSI that is calculated with the SWIR2 band of the same satellite. EMI performance is less robust than other methods as it is not useful for extracting sandy surfaces in area with different land covers. Change detection techniques were used by comparing the areas of the sandy lands for the periods from 1987 to 2017. The results showed an increase in sandy areas over four decades. The percentage of this increase was about 20 % to 30 % during 2002 and 2017 compared to 1987.</p>

Publisher

Universitat Politecnica de Valencia

Subject

Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Reference53 articles.

1. Abbas, A. 2010. Desertification Study of Dalmaj Lake Area in Mesopotamian Plain by Using Remote Sensing Techniques. Baghdad University.

2. Abdul-Ameer, E.A. 2012. The geomorphological study of dune fields and their environmental effects at Al-Muthana Governorate Iraq. D. Sc. thesis, University of Baghdad, College of Science. 163p.

3. Acharya, T.D., Yang, I. 2015. Exploring landsat 8. International Journal of IT, Engineering and Applied Sciences Research, 4(4), 4-10.

4. Agapiou, A. 2020. Evaluation of Landsat 8 OLI/TIRS Level-2 and Sentinel 2 Level-1C Fusion Techniques Intended for Image Segmentation of Archaeological Landscapes and Proxies. Remote Sensing, 12(3), 579. https://doi.org/10.3390/rs12030579

5. Al-Khateeb A. 2007. Climatic Changes and it's affect on geodynamic processes in Iraq during (1940-2000).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3