Methods of Sandy Land Detection in a Sparse-Vegetation Scene Based on the Fusion of HJ-2A Hyperspectral and GF-3 SAR Data

Author:

Li Yi,Wu Junjun,Zhong Bo,Shi Xiaoliang,Xu Kunpeng,Ao KaiORCID,Sun Bin,Ding Xiangyuan,Wang Xinshuang,Liu Qinhuo,Yang Aixia,Chen Fei,Shi Mengqi

Abstract

Accurate identification of sandy land plays an important role in sandy land prevention and control. It is difficult to identify the nature of sandy land due to vegetation covering the soil in the sandy area. Therefore, HJ-2A hyperspectral data and GF-3 Synthetic Aperture Radar (SAR) data were used as the main data sources in this article. The advantages of the spectral characteristics of a hyperspectral image and the penetration characteristics of SAR data were used synthetically to carry out mixed-pixel decomposition in the “horizontal” direction and polarization decomposition in the “vertical” direction. The results showed that in the study area of the Otingdag Sandy Land, in China, the accuracy of sandy land detection based on feature-level fusion and single GF-3 data was verified to be 92% in both cases by field data; the accuracy of sandy land detection based on feature-level fusion was verified to be 88.74% by the data collected from Google high-resolution imagery, which was higher than that based on single HJ-2A (74.17%) and single GF-3 data (88.08%). To further verify the universality of the feature-level fusion method for sandy land detection, Alxa sandy land was also used as a verification area and the accuracy of sandy land detection was verified to be as high as 88.74%. The method proposed in this paper made full use of the horizontal and vertical structural information of remote sensing data. The problem of mixed pixels in sparse-vegetation scenes in the horizontal direction and the problem of vegetation covering sandy soil in the vertical direction were both well solved. Accurate identification of sandy land can be realized effectively, which can provide technical support for sandy land prevention and control.

Funder

National Natural Science Foundation of China Youth Science Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3