Abstract
Let R be a G-graded ring and M be a G-graded R-module. We define the graded primary spectrum of M, denoted by PSG(M), to be the set of all graded primary submodules Q of M such that (GrM(Q) :RM) = Gr((Q:RM)). In this paper, we define a topology on PSG(M) having the Zariski topology on the graded prime spectrum SpecG(M) as a subspace topology, and investigate several topological properties of this topological space.
Publisher
Universitat Politecnica de Valencia
Reference18 articles.
1. K. Al-Zoubi, The graded primary radical of a graded submodules, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 1 (2016), 395-402.
2. K. Al-Zoubi, I. Jaradat and M. Al-Dolat, On graded P-compactly packed modules, Open Mathematics 13, no. 1 (2015), 487-492. https://doi.org/10.1515/math-2015-0045
3. S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33, no. 1 (2006), 3-7.
4. S. E. Atani and F. Farzalipour, Notes on the graded prime submodules, Int. Math. Forum. 1, no. 38 (2006), 1871-1880. https://doi.org/10.12988/imf.2006.06162
5. S. E. Atani and F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007), 371-378.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献