Author:
Salam Saif,Al-Zoubi Khaldoun
Abstract
<abstract><p>Let $ R $ be a $ G $ graded commutative ring and $ M $ be a $ G $-graded $ R $-module. The set of all graded second submodules of $ M $ is denoted by $ Spec_G^s(M), $ and it is called the graded second spectrum of $ M $. We discuss graded rings with Noetherian graded prime spectrum. In addition, we introduce the notion of the graded Zariski socle of graded submodules and explore their properties. We also investigate $ Spec^s_G(M) $ with the Zariski topology from the viewpoint of being a Noetherian space.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference16 articles.
1. R. Abu-Dawwas, M. Ali, Comultiplication modules over strongly graded rings, International Journal of Pure and Applied Mathematics, 81 (2012), 693–699.
2. A. J. AL-Juburie, An additional properties of the graded prime spectrum of (R, G), J. Phys.: Conf. Ser., 1591 (2020), 012104. http://doi.org/10.1088/1742-6596/1591/1/012104
3. K. Al-Zoubi, A. Al-Qderat, Some properties of graded comultiplication module, Open Math., 15 (2017), 187–192. https://doi.org/10.1515/math-2017-0016
4. H. Ansari-Toroghy, F. Farshadifar, Graded comultiplication modules, Chiang Mai J. Sci., 38 (2011), 311–320.
5. H. Ansari-Toroghy, F. Farshadifar, On graded second modules, Tamkang J. Math., 43 (2012), 499–505. https://doi.org/10.5556/j.tkjm.43.2012.1319
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献