Detección de Fibrilación Ventricular Mediante Tiempo-Frecuencia y Clasificador KNN sin Extracción de Parámetros

Author:

Mjahad Azeddine,Rosado Muñoz Alfredo,Bataller Mompeán Manuel,Francés Víllora Jose V.,Guerrero Martínez Juan F.

Abstract

<p>Este trabajo propone la detección de FV y su discriminación de TV y otros ritmos cardiacos basándose en la representación tiempo-frecuencia del ECG y su conversión en imágen como entrada a un clasificador de vecinos más cercanos (KNN) sin necesidad de extracción de parámetros adicionales. Tres variantes de datos de entrada al clasificador son evaluados. Los resultados clasifican la señal en cuatro clases diferentes: ’Normal’ para latidos con ritmo sinusal, ’FV’ para fibrilación ventricular, ’TV’ para taquicardia ventricular y ’Otros’ para el resto de ritmos. Los resultados para detección de FV mostraron 88,27% de sensibilidad y 98,22% de especificidad para la entrada de imágen equivalente reducida que es la más rápida computacionalmente a pesar de obtener resultados de clasificación ligeramente inferiores a las representaciones no reducidas. En el caso de TV, se alcanzó un 88,31% de sensibilidad y 98,80% de especificidad, un 98,14% de sensibilidad y 96,82% de especificidad para ritmo sinusal normal y 96,91% de sensibilidad con 99,06% de especificidad para la clase ’Otros’. Finalmente, se realiza una comparación con otros algoritmos.</p>

Publisher

Universitat Politecnica de Valencia

Subject

General Computer Science,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3