Detection of Ventricular Fibrillation Using the Image from Time-Frequency Representation and Combined Classifiers without Feature Extraction

Author:

Mjahad Azeddine,Rosado-Muñoz Alfredo,Guerrero-Martínez Juan,Bataller-Mompeán Manuel,Francés-Villora Jose,Dutta Malay

Abstract

Due the fact that the required therapy to treat Ventricular Fibrillation (V F) is aggressive (electric shock), the lack of a proper detection and recovering therapy could cause serious injuries to the patient or trigger a ventricular fibrillation, or even death. This work describes the development of an automatic diagnostic system for the detection of the occurrence of V F in real time by means of the time-frequency representation (T F R) image of the ECG. The main novelties are the use of the T F R image as input for a classification process, as well as the use of combined classifiers. The feature extraction stage is eliminated and, together with the use of specialized binary classifiers, this method improves the results of the classification. To verify the validity of the method, four different classifiers in different combinations are used: Regression Logistic with L2 Regularization (L 2 R L R), adaptive neural network (A N N C), Bagging (B A G G), and K-nearest neighbor (K N N). The Hierarchical Method (HM) and Voting Majority Method (VMM) combinations are used. ECG signals used for evaluation were obtained from the standard MIT-BIH and AHA databases. When the classifiers were combined, it was observed that the combination of B A G G , K N N , and A N N C using the Hierarchical Method (HM) gave the best results, with a sensitivity of 95.58 ± 0.41%, a 99.31 ± 0.08% specificity, a 98.6 ± 0.04% of overall accuracy, and a precision of 98.25 ± 0.29% for V F . Whereas a sensitivity of 94.02 ± 0.58%, a specificity of 99.31 ± 0.08%, an overall accuracy of 99.14 ± 0.43%, and a precision of 98.59 ± 0.09% was obtained for V T with a run time between 0.07 s and 0.12 s. Results show that the use of T F R image data to feed the combined classifiers yields a reduction in execution time with performance values above to those obtained by individual classifiers. This is of special utility for V F detection in real time.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3