Abstract
<p>Los avances tecnológicos en general, y en el ámbito de la industria en particular, conllevan el desarrollo y optimización de las actividades que en ella tienen lugar. Para alcanzar este objetivo, resulta de vital importancia detectar cualquier tipo de anomalía en su fase más incipiente, contribuyendo, entre otros, al ahorro energético y económico, y a una reducción del impacto ambiental. En un contexto en el que se fomenta la reducción de emisión de gases contaminantes, las energías alternativas, especialmente la energía eólica, juegan un papel crucial. En la fabricación de las palas de aerogenerador se recurre comúnmente a materiales de tipo bicomponente, obtenidos a través del mezclado de dos substancias primarias. En la presente investigación se evalúan distintas técnicas inteligentes de clasificación one-class para detectar anomalías en un sistema de mezclado para la obtención de materiales bicomponente empleados en la elaboración de palas de aerogenerador. Para lograr los modelos inteligentes que permitan la detección de anomalías, se han usado datos reales extraídos de una planta de mezclado en operación durante su correcto funcionamiento. Los clasificadores obtenidos para cada técnica son validados a través de anomalías generadas de manera artificial, obteniéndose resultados altamente satisfactorios.</p>
Publisher
Universitat Politecnica de Valencia
Subject
General Computer Science,Control and Systems Engineering
Reference32 articles.
1. Bradley, A. P., 1997. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (7), 1145 - 1159. https://doi.org/10.1016/S0031-3203(96)00142-2
2. Casale, P., Pujol, O., Radeva, P., 2011. Approximate convex hulls family for one-class classification. In: Sansone, C., Kittler, J., Roli, F. (Eds.), Multiple Classifier Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 106-115. https://doi.org/10.1007/978-3-642-21557-5_13
3. Casale, P., Pujol, O., Radeva, P., 2014. Approximate polytope ensemble for oneclass classification. Pattern Recognition 47 (2), 854 - 864. https://doi.org/10.1016/j.patcog.2013.08.007
4. Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly detection: A survey. ACM computing surveys (CSUR) 41 (3), 15. https://doi.org/10.1145/1541880.1541882
5. Chen, Y., Zhou, X. S., Huang, T. S., 2001. One-class svm for learning in image retrieval. In: Image Processing, 2001. Proceedings. 2001 International Conference on. Vol. 1. IEEE, pp. 34-37.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献