Conformal Willmore tori in ℝ4

Author:

Lamm Tobias,Schätzle Reiner M.

Abstract

Abstract For every two-dimensional torus {T^{2}} and every k \in \mathbb{N} , {k\geq 3} , we construct a conformal Willmore immersion f : T^{2} \to \mathbb{R}^{4} with exactly one point of density k and Willmore energy 4πk. Moreover, we show that the energy value {8\pi} cannot be attained by such an immersion. Additionally, we characterize the branched double covers T^{2} \to S^{2} \times \{ 0 \} as the only branched conformal immersions, up to Möbius transformations of {\mathbb{R}^{4}} , from a torus into {\mathbb{R}^{4}} with at least one branch point and Willmore energy {8\pi} . Using a perturbation argument in order to regularize a branched double cover, we finally show that the infimum of the Willmore energy in every conformal class of tori is less than or equal to {8\pi} .

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference54 articles.

1. New examples of conformally constrained Willmore minimizers of explicit type;Adv. Calc. Var.,2015

2. Critical weak immersed surfaces within sub-manifolds of the Teichmüller space;Adv. Math.,2015

3. Uniqueness, symmetry, and embeddedness of minimal surfaces;J. Differential Geom.,1983

4. Willmore two-spheres in the four-sphere;Trans. Amer. Math. Soc.,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3