Willmore two-spheres in the four-sphere

Author:

Montiel Sebastián

Abstract

Genus zero Willmore surfaces immersed in the three-sphere S 3 \mathbb {S}^3 correspond via the stereographic projection to minimal surfaces in Euclidean three-space with finite total curvature and embedded planar ends. The critical values of the Willmore functional are 4 π k 4\pi k , where k N k\in \mathbb {N}^* , with k 2 , 3 , 5 , 7 k\ne 2,3,5,7 . When the ambient space is the four-sphere S 4 \mathbb {S}^4 , the regular homotopy class of immersions of the two-sphere S 2 \mathbb {S}^2 is determined by the self-intersection number q Z q\in \mathbb {Z} ; here we shall prove that the possible critical values are 4 π ( | q | + k + 1 ) 4\pi (|q|+k+1) , where k N k\in \mathbb {N} . Moreover, if k = 0 k=0 , the corresponding immersion, or its antipodal, is obtained, via the twistor Penrose fibration P 3 S 4 \mathbb {P}^3\rightarrow \mathbb {S}^4 , from a rational curve in P 3 \mathbb {P}^3 and, if k 0 k\ne 0 , via stereographic projection, from a minimal surface in R 4 \mathbb {R}^4 with finite total curvature and embedded planar ends. An immersion lies in both families when the rational curve is contained in some P 2 P 3 \mathbb {P}^2\subset \mathbb {P}^3 or (equivalently) when the minimal surface of R 4 \mathbb {R}^4 is complex with respect to a suitable complex structure of R 4 \mathbb {R}^4 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. [Bl] W. Blaschke, Vorlesungen Uber Differentialgeometrie III, Springer, Berlin, 1929.

2. A duality theorem for Willmore surfaces;Bryant, Robert L.;J. Differential Geom.,1984

3. Surfaces in conformal geometry;Bryant, Robert L.,1988

4. Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form;Castro, Ildefonso;Tohoku Math. J. (2),1993

5. Willmore surfaces with a duality in 𝑆^{𝑁}(1);Ejiri, Norio;Proc. London Math. Soc. (3),1988

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometry of complete minimal surfaces at infinity and the Willmore index of their inversions;Calculus of Variations and Partial Differential Equations;2024-08-05

2. Normal Critical Surfaces in $${\mathbb {C}}P^{2}$$;Results in Mathematics;2024-02-05

3. The lifts of surfaces in neutral 4-manifolds into the 2-Grassmann bundles;Differential Geometry and its Applications;2023-12

4. On the index of minimal 2-tori in the 4-sphere;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-10-19

5. Willmore deformations between minimal surfaces in $$\mathbb {H}^{n+2}$$ and $$\mathbb {S}^{n+2}$$;Mathematische Zeitschrift;2022-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3