Dehn functions and Hölder extensions in asymptotic cones

Author:

Lytchak Alexander1,Wenger Stefan2,Young Robert3

Affiliation:

1. Mathematisches Institut, Universität Köln, Weyertal 86–90, 50931Köln, Germany

2. Department of Mathematics, University of Fribourg, Chemin du Musée 23, 1700Fribourg, Switzerland

3. Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA

Abstract

AbstractThe Dehn function measures the area of minimal discs that fill closed curves in a space; it is an important invariant in analysis, geometry, and geometric group theory. There are several equivalent ways to define the Dehn function, varying according to the type of disc used. In this paper, we introduce a new definition of the Dehn function and use it to prove several theorems. First, we generalize the quasi-isometry invariance of the Dehn function to a broad class of spaces. Second, we prove Hölder extension properties for spaces with quadratic Dehn function and their asymptotic cones. Finally, we show that ultralimits and asymptotic cones of spaces with quadratic Dehn function also have quadratic Dehn function. The proofs of our results rely on recent existence and regularity results for area-minimizing Sobolev mappings in metric spaces.

Funder

National Science Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference74 articles.

1. Area and co-area formulas for mappings of the Sobolev classes with values in a metric space;Sibirsk. Mat. Zh.,2007

2. Sobolev classes of functions with values in a metric space. II;Sibirsk. Mat. Zh.,2004

3. Frequency of Sobolev and quasiconformal dimension distortion;J. Math. Pures Appl. (9),2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Plateau-Douglas Problem for Singular Configurations and in General Metric Spaces;Archive for Rational Mechanics and Analysis;2023-04-05

2. Rigidity of the Pu inequality and quadratic isoperimetric constants of normed spaces;Revista Matemática Iberoamericana;2021-11-01

3. Area minimizing surfaces in homotopy classes in metric spaces;T AM MATH SOC;2021-10-28

4. The structure of minimal surfaces in CAT(0) spaces;Journal of the European Mathematical Society;2021-05-07

5. Canonical parameterizations of metric disks;Duke Mathematical Journal;2020-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3