The Plateau-Douglas Problem for Singular Configurations and in General Metric Spaces

Author:

Creutz PaulORCID,Fitzi Martin

Abstract

AbstractAssume you are given a finite configuration $$\Gamma $$ Γ of disjoint rectifiable Jordan curves in $${\mathbb {R}}^n$$ R n . The Plateau-Douglas problem asks whether there exists a minimizer of area among all compact surfaces of genus of at most p which span $$\Gamma $$ Γ . While the solution to this problem is well-known, the classical approaches break down if one allows for singular configurations $$\Gamma $$ Γ , where the curves are potentially non-disjoint or self-intersecting. Our main result solves the Plateau-Douglas problem for such potentially singular configurations. Moreover, our proof works not only in $${\mathbb {R}}^n$$ R n but in general proper metric spaces. In particular, the existence of an area minimizer is new for disjoint configurations of Jordan curves in general complete Riemannian manifolds. A minimal surface of fixed genus p bounding a given configuration $$\Gamma $$ Γ need not always exist, even in the most regular settings. Concerning this problem, we also generalize the approach for singular configurations via minimal sequences satisfying conditions of cohesion and adhesion to the setting of metric spaces.

Funder

Max Planck Institute for Mathematics

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3