Homotopy techniques for tensor decomposition and perfect identifiability

Author:

Hauenstein Jonathan D.1,Oeding Luke2,Ottaviani Giorgio3,Sommese Andrew J.1

Affiliation:

1. Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA

2. Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA

3. Dipartimento di Matematica e Informatica “U. Dini”, Università degli Studi di Firenze, Firenze, Italy

Abstract

AbstractLetTbe a general complex tensor of format{(n_{1},\dots,n_{d})}. When the fraction{\prod_{i}n_{i}/[1+\sum_{i}(n_{i}-1)]}is an integer, and a natural inequality (called balancedness) is satisfied, it is expected thatThas finitely many minimal decomposition as a sum of decomposable tensors. We show how homotopy techniques allow us to find all the decompositions ofT, starting from a given one. Computationally, this gives a guess regarding the total number of such decompositions. This guess matches exactly with all cases previously known, and predicts several unknown cases. Some surprising experiments yielded two new cases of generic identifiability: formats{(3,4,5)}and{(2,2,2,3)}which have a unique decomposition as the sum of six and four decomposable tensors, respectively. We conjecture that these two cases together with the classically known matrix pencils are the only cases where generic identifiability holds, i.e., the onlyidentifiablecases. Building on the computational experiments, we use algebraic geometry to prove these two new cases are indeed generically identifiable.

Funder

National Science Foundation

Defense Advanced Research Projects Agency

Alfred P. Sloan Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference140 articles.

1. Identifiability of homogeneous polynomials and Cremona transformations;Preprint,2016

2. A proof of the set-theoretic version of the salmon conjecture;J. Algebra,2012

3. Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning;Discrete Contin. Dyn. Syst. Ser. S,2011

4. Equations for secant varieties of Veronese and other varieties;Ann. Mat. Pura Appl. (4),2013

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3