Area minimizing surfaces of bounded genus in metric spaces

Author:

Fitzi Martin1,Wenger Stefan1

Affiliation:

1. Department of Mathematics, University of Fribourg, Chemin du Musée 23, 1700 Fribourg, Switzerland

Abstract

Abstract The Plateau–Douglas problem asks to find an area minimizing surface of fixed or bounded genus spanning a given finite collection of Jordan curves in Euclidean space. In the present paper we solve this problem in the setting of proper metric spaces admitting a local quadratic isoperimetric inequality for curves. We moreover obtain continuity up to the boundary and interior Hölder regularity of solutions. Our results generalize corresponding results of Jost and Tomi-Tromba from the setting of Riemannian manifolds to that of proper metric spaces with a local quadratic isoperimetric inequality. The special case of a disc-type surface spanning a single Jordan curve corresponds to the classical problem of Plateau, in proper metric spaces recently solved by Lytchak and the second author.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference76 articles.

1. Area and co-area formulas for mappings of the Sobolev classes with values in a metric space;Sibirsk. Mat. Zh.,2007

2. The Plateau problem for minimal surfaces of arbitrary topological structure;Amer. J. Math.,1939

3. The Douglas problem for parametric double integrals;Manuscripta Math.,2003

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3