Affiliation:
1. Department of Mathematics , Massachusetts Institute of Technology , 77 Massachusetts Ave, MA 02139 , Cambridge , USA
Abstract
Abstract
Unique continuation of harmonic functions on
RCD
{\operatorname{RCD}}
space is a long-standing open problem, with little known even in the setting of Alexandrov spaces. In this paper, we establish the weak unique continuation theorem for harmonic functions on
RCD
(
K
,
2
)
{\operatorname{RCD}(K,2)}
spaces and give a counterexample for strong unique continuation in the setting of
RCD
(
K
,
N
)
{\operatorname{RCD}(K,N)}
space for any
N
≥
4
{N\geq 4}
and any
K
∈
ℝ
{K\in\mathbb{R}}
.
Subject
Applied Mathematics,General Mathematics
Reference64 articles.
1. G. Alessandrini,
On Courant’s nodal domain theorem,
Forum Math. 10 (1998), no. 5, 521–532.
2. G. Alessandrini and R. Magnanini,
Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions,
SIAM J. Math. Anal. 25 (1994), no. 5, 1259–1268.
3. F. J. Almgren, Jr.,
Almgren’s big regularity paper,
World Scientific Monogr. Ser. Math. 1,
World Scientific, River Edge 2000.
4. L. Ambrosio and J. Bertrand,
DC calculus,
Math. Z. 288 (2018), no. 3–4, 1037–1080.
5. L. Ambrosio, N. Gigli and G. Savaré,
Metric measure spaces with Riemannian Ricci curvature bounded from below,
Duke Math. J. 163 (2014), no. 7, 1405–1490.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pleijel nodal domain theorem in non-smooth setting;Transactions of the American Mathematical Society, Series B;2024-09-13
2. Unique continuation problem on RCD Spaces. I;Geometriae Dedicata;2024-02-15