On Mordell–Weil groups and congruences between derivatives of twisted Hasse–Weil L-functions

Author:

Burns David,Macias Castillo Daniel,Wuthrich Christian

Abstract

AbstractLetAbe an abelian variety defined over a number fieldkand letFbe a finite Galois extension ofk. Letpbe a prime number. Then under certain not-too-stringent conditions onAandFwe compute explicitly the algebraic part of thep-component of the equivariant Tamagawa number of the pair(h^{1}(A_{/F})(1),\mathbb{Z}[{\rm Gal}(F/k)]). By comparing the result of this computation with the theorem of Gross and Zagier we are able to give the first verification of thep-component of the equivariant Tamagawa number conjecture for an abelian variety in the technically most demanding case in which the relevant Mordell–Weil group has strictly positive rank and the relevant field extension is both non-abelian and of degree divisible byp. More generally, our approach leads us to the formulation of certain precise families of conjecturalp-adic congruences between the values ats=1of derivatives of the Hasse–WeilL-functions associated to twists ofA, normalised by a product of explicit equivariant regulators and periods, and to explicit predictions concerning the Galois structure of Tate–Shafarevich groups. In several interesting cases we provide theoretical and numerical evidence in support of these more general predictions.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference96 articles.

1. Organizing the arithmetic of elliptic curves;Adv. Math.,2005

2. On equivariant global epsilon constants for certain dihedral extensions;Math. Comp.,2004

3. Kolyvagin’s work on modular elliptic curves;L-functions and arithmetic,1991

4. On extensions of lattices;Michigan Math. J.,1966

5. Organizing the arithmetic of elliptic curves;Adv. Math.,2005

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3