On Refined Conjectures of Birch and Swinnerton-Dyer type for Hasse–Weil–Artin 𝐿-Series

Author:

Burns David,Macias Castillo Daniel

Abstract

We consider refined conjectures of Birch and Swinnerton-Dyer type for the Hasse–Weil–Artin L L -series of abelian varieties over general number fields. We shall, in particular, formulate several new such conjectures and establish their precise relation to previous conjectures, including to the relevant special case of the equivariant Tamagawa number conjecture. We also derive a wide range of concrete interpretations and explicit consequences of these conjectures that, in general, involve a thoroughgoing mixture of difficult Archimedean considerations related to refinements of the conjecture of Deligne and Gross and delicate p p -adic congruence relations that involve the bi-extension height pairing of Mazur and Tate and are related to key aspects of noncommutative Iwasawa theory. In important special cases we provide strong evidence, both theoretical and numerical, in support of the conjectures.

Publisher

American Mathematical Society (AMS)

Reference104 articles.

1. Cohomology of groups;Atiyah, M. F.,1967

2. Théorie d’Iwasawa des représentations cristallines. II;Benois, Denis;Comment. Math. Helv.,2008

3. Kolyvagin’s descent and Mordell-Weil groups over ring class fields;Bertolini, Massimo;J. Reine Angew. Math.,1990

4. Derived heights and generalized Mazur-Tate regulators;Bertolini, Massimo;Duke Math. J.,1994

5. Derived 𝑝-adic heights;Bertolini, Massimo;Amer. J. Math.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3