Blown-up toric surfaces with non-polyhedral effective cone

Author:

Castravet Ana-Maria1,Laface Antonio2,Tevelev Jenia3,Ugaglia Luca4

Affiliation:

1. UVSQ, CNRS , Laboratoire de Mathématiques de Versailles , Université Paris-Saclay , 78000 Versailles , France

2. Departamento de Matemática , Universidad de Concepción , Casilla 160-C , Concepción , Chile

3. Department of Mathematics and Statistics , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , MA 01003 , USA

4. Dipartimento di Matematica e Informatica , Università degli studi di Palermo , Via Archirafi 34, 90123 Palermo , Italy

Abstract

Abstract We construct projective toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone. As a consequence, we prove that the pseudo-effective cone of the Grothendieck–Knudsen moduli space M ¯ 0 , n \overline{M}_{0,n} of stable rational curves is not polyhedral for n 10 n\geq 10 . These results hold both in characteristic 0 and in characteristic 𝑝, for all primes 𝑝. Many of these toric surfaces are related to an interesting class of arithmetic threefolds that we call arithmetic elliptic pairs of infinite order. Our analysis relies on tools of arithmetic geometry and Galois representations in the spirit of the Lang–Trotter conjecture, producing toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone in characteristic 0 and in characteristic 𝑝, for an infinite set of primes 𝑝 of positive density.

Funder

Agence Nationale de la Recherche

Fondo Nacional de Desarrollo Científico y Tecnológico

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic Weak Gravity Conjecture in M-theory on KK3;Progress of Theoretical and Experimental Physics;2024-06-25

2. Effective cone of the blowup of the symmetric product of a curve;Proceedings of the American Mathematical Society, Series B;2024-06-24

3. Tropical computations for toric intersection theory in Macaulay2;Journal of Software for Algebra and Geometry;2024-03-26

4. The W(E6)$W(E_6)$‐invariant birational geometry of the moduli space of marked cubic surfaces;Mathematische Nachrichten;2024-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3