Author:
Samrin Rafath,Vasumathi Devara
Abstract
AbstractDespite the rapid developments in data technology, intruders are among the most revealed threats to security. Network intrusion detection systems are now a typical constituent of network security structures. In this paper, we present a combined weighted K-means clustering algorithm with artificial neural network (WKMC+ANN)-based intrusion identification scheme. This paper comprises two modules: clustering and intrusion detection. The input dataset is gathered into clusters with the usage of WKMC in clustering module. In the intrusion detection module, the clustered information is trained with the utilization of ANN and its structure is stored. In the testing process, the data are tested by choosing the most suitable ANN classifier, which corresponds to the closest cluster to the test data, according to distance or similarity measures. For experimental evaluation, we used the benchmark database, and the results clearly demonstrated that the proposed technique outperformed the existing technique by having better accuracy.
Subject
Artificial Intelligence,Information Systems,Software
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献