The Effect of Hyperparameter Optimization on the Estimation of Performance Metrics in Network Traffic Prediction using the Gradient Boosting Machine Model

Author:

Mwita Machoke,Mbelwa Jimmy,Agbinya Johnson,Elikana Sam Anael

Abstract

Information and Communication Technology (ICT) has changed the way we communicate and access information, resulting in the high generation of heterogeneous data. The amount of network traffic generated constantly increases in velocity, veracity, and volume as we enter the era of big data. Network traffic classification and intrusion detection are very important for the early detection and identification of unnecessary network traffic. The Machine Learning (ML) approach has recently entered the center stage in network traffic accurate classification. However, in most cases, it does not apply model hyperparameter optimization. In this study, gradient boosting machine prediction was used with different hyperparameter optimization configurations, such as interaction depth, tree number, learning rate, and sampling. Data were collected through an experimental setup by using the Sophos firewall and Cisco router data loggers. Data analysis was conducted with R software version 4.2.0 with Rstudio Integrated Development Environment. The dataset was split into two partitions, where 70% was used for training the model and 30% for testing. At a learning rate of 0.1, interaction depth of 14, and tree number of 2500, the model estimated the highest performance metrics with an accuracy of 0.93 and R of 0.87 compared to 0.90 and 0.85 before model optimization. The same configuration attained the minimum classification error of 0.07 than 0.10 before model optimization. After model tweaking, a method was developed for achieving improved accuracy, R square, mean decrease in Gini coefficients for more than 8 features, lower classification error, root mean square error, logarithmic loss, and mean square error in the model.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. G-GANS for Adaptive Learning in Dynamic Network Slices;Engineering, Technology & Applied Science Research;2024-06-01

2. Optimizing the Effectiveness of Magnetic Lenses by utilizing the Electron Optical Design (EOD) Software;Engineering, Technology & Applied Science Research;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3