Deep learning models for multilabel ECG abnormalities classification: A comparative study using TPE optimization

Author:

Rawi Atiaf A.1,Elbashir Murtada K.2,Ahmed Awadallah M.3

Affiliation:

1. Department of Computer Sciences, Faculty of Mathematical and Computer Sciences, Gezira University , P.O. Box 20 , Wad Madani 21111 , Sudan

2. Department of Information Systems, College of Computer and Information Sciences, Jouf University , Sakaka 72388 , Saudi Arabia

3. Department of Computer Sciences, Faculty of Mathematical and Computer Sciences, Gezira University , Wad Madani 21111 , Sudan

Abstract

AbstractThe problem addressed in this study is the limitations of previous works that considered electrocardiogram (ECG) classification as a multiclass problem, despite many abnormalities being diagnosed simultaneously in real life, making it a multilabel classification problem. The aim of the study is to test the effectiveness of deep learning (DL)-based methods (Inception, MobileNet, LeNet, AlexNet, VGG16, and ResNet50) using three large 12-lead ECG datasets to overcome this limitation. The define-by-run technique is used to build the most efficient DL model using the tree-structured Parzen estimator (TPE) algorithm. Results show that the proposed methods achieve high accuracy and precision in classifying ECG abnormalities for large datasets, with the best results being 97.89% accuracy and 90.83% precision for the Ningbo dataset, classifying 42 classes for the Inception model; 96.53% accuracy and 85.67% precision for the PTB-XL dataset, classifying 24 classes for the Alex net model; and 95.02% accuracy and 70.71% precision for the Georgia dataset, classifying 23 classes for the Alex net model. The best results achieved for the optimum model that was proposed by the define-by-run technique were 97.33% accuracy and 97.71% precision for the Ningbo dataset, classifying 42 classes; 96.60% accuracy and 83.66% precision for the PTB-XL dataset, classifying 24 classes; and 94.32% accuracy and 66.97% precision for the Georgia dataset, classifying 23 classes. The proposed DL-based methods using the TPE algorithm provide accurate results for multilabel classification of ECG abnormalities, improving the diagnostic accuracy of heart conditions.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3