A Robust Framework for Data Generative and Heart Disease Prediction Based on Efficient Deep Learning Models

Author:

Sarra Raniya R.ORCID,Dinar Ahmed M.ORCID,Mohammed Mazin AbedORCID,Ghani Mohd Khanapi Abd,Albahar Marwan Ali

Abstract

Biomarkers including fasting blood sugar, heart rate, electrocardiogram (ECG), blood pressure, etc. are essential in the heart disease (HD) diagnosing. Using wearable sensors, these measures are collected and applied as inputs to a deep learning (DL) model for HD diagnosis. However, it is observed that model accuracy weakens when the data gathered are scarce or imbalanced. Therefore, this work proposes two DL-based frameworks, GAN-1D-CNN, and GAN-Bi-LSTM. These frameworks contain: (1) a generative adversarial network (GAN) and (2) a one-dimensional convolutional neural network (1D-CNN) or bi-directional long short-term memory (Bi-LSTM). The GAN model is utilized to augment the small and imbalanced dataset, which is the Cleveland dataset. The 1D-CNN and Bi-LSTM models are then trained using the enlarged dataset to diagnose HD. Unlike previous works, the proposed frameworks increase the dataset first to avoid the prediction bias caused by the limited data. The GAN-1D-CNN achieved 99.1% accuracy, specificity, sensitivity, F1-score, and 100% area under the curve (AUC). Similarly, the GAN-Bi-LSTM obtained 99.3% accuracy, 99.2% specificity, 99.3% sensitivity, 99.2% F1-score, and 100% AUC. Furthermore, time complexity of proposed frameworks is investigated with and without principal component analysis (PCA). The PCA method reduced prediction times for 61 samples using GAN-1D-CNN and GAN-Bi-LSTM to 68.8 and 74.8 ms, respectively. These results show that it is reliable to use our frameworks for augmenting limited data and predicting heart disease.

Funder

Deanship of Scientific Research at Umm Al-Qura University

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference43 articles.

1. Awareness and knowledge of Rheumatic heart disease among medical students comparing to other health specialties students in Umm Al-Qura University, Makkah city, KSA-Analytic cross-sectional study;Med. Sci.,2022

2. A new multi-agent feature wrapper machine learning approach for heart disease diagnosis;Comput. Mater. Contin.,2021

3. Enhanced accuracy for heart disease prediction using artificial neural network;Indones. J. Electr. Eng. Comput. Sci.,2022

4. Public Awareness of Coronary Artery Disease and its Risk Factors Among Al-Qunfudah Governorate Population;J. Umm Al-Qura Univ. Med. Sci.,2022

5. ECG and Medical Diagnosis Based Recognition & Prediction of Cardiac Disease Using Deep Learning;J. Sci. Technol. Res.,2019

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3