Automatic adaptive weighted fusion of features-based approach for plant disease identification

Author:

Kirti 1,Rajpal Navin1,Vishwakarma Virendra P.1

Affiliation:

1. Computer Science & Engineering (CSE), University School of Information, Communication and Technology, Guru Gobind Singh Indraprastha University , Dwarka , Delhi 110078 , India

Abstract

Abstract With the rapid expansion in plant disease detection, there has been a progressive increase in the demand for more accurate systems. In this work, we propose a new method combining color information, edge information, and textural information to identify diseases in 14 different plants. A novel 3-branch architecture is proposed containing the color information branch, an edge information branch, and a textural information branch extracting the textural information with the help of the central difference convolution network (CDCN). ResNet-18 was chosen as the base architecture of the deep neural network (DNN). Unlike the traditional DNNs, the weights adjust automatically during the training phase and provide the best of all the ratios. The experiments were performed to determine individual and combinational features’ contribution to the classification process. Experimental results of the PlantVillage database with 38 classes show that the proposed method has higher accuracy, i.e., 99.23%, than the existing feature fusion methods for plant disease identification.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3