TeaDiseaseNet: multi-scale self-attentive tea disease detection

Author:

Sun Yange,Wu Fei,Guo Huaping,Li Ran,Yao Jianfeng,Shen Jianbo

Abstract

Accurate detection of tea diseases is essential for optimizing tea yield and quality, improving production, and minimizing economic losses. In this paper, we introduce TeaDiseaseNet, a novel disease detection method designed to address the challenges in tea disease detection, such as variability in disease scales and dense, obscuring disease patterns. TeaDiseaseNet utilizes a multi-scale self-attention mechanism to enhance disease detection performance. Specifically, it incorporates a CNN-based module for extracting features at multiple scales, effectively capturing localized information such as texture and edges. This approach enables a comprehensive representation of tea images. Additionally, a self-attention module captures global dependencies among pixels, facilitating effective interaction between global information and local features. Furthermore, we integrate a channel attention mechanism, which selectively weighs and combines the multi-scale features, eliminating redundant information and enabling precise localization and recognition of tea disease information across diverse scales and complex backgrounds. Extensive comparative experiments and ablation studies validate the effectiveness of the proposed method, demonstrating superior detection results in scenarios characterized by complex backgrounds and varying disease scales. The presented method provides valuable insights for intelligent tea disease diagnosis, with significant potential for improving tea disease management and production.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference64 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale Tea Disease Detection with Channel–Spatial Attention;Sustainability;2024-08-09

2. Camouflaged Animal Target Detection Algorithm Based on YOLOv8;2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3