Composite Sequential Modeling for Identifying Fake Reviews

Author:

Bhargava Rupal,Baoni Anushka,Sharma Yashvardhan

Abstract

Abstract This paper presents a comprehensive analysis and comparison of various proposed sequential models based on different deep networks such as the convolutional neural network, long short-term memory, and recurrent neural network. The different sequential models are analyzed based on the number of layers, the number of output dimensions, order, and the combination of different deep network architectures. The proposed approach is compared to a baseline model based on traditional machine learning techniques.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference78 articles.

1. Web based customer review spam detection using conceptual level similarity measure and shingling technique;IJIRST,2011

2. Seven months with the devils: a long-term study of content polluters on Twitter;ICWSM,2011

3. Observing common spam in Twitter and email;Proceedings of the 2012 ACM Conference on Internet Measurement Conference,2012

4. SocialFilter: introducing social trust to collaborative spam mitigation;INFOCOM, 2011 Proceedings IEEE,2011

5. Recursive deep models for semantic compositionality over a sentiment treebank;Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3