Non-dominated Sorting Genetic Algorithms for a Multi-objective Resource Constraint Project Scheduling Problem

Author:

Wang XixiORCID,Yalaoui Farouk,Dugardin Frédéric

Abstract

Abstract The resource constraint project scheduling problem (RCPSP) has attracted growing attention since the last decades. Precedence constraints are considered as well as resources with limited capacities. During the project, the same resource can be required by several in-process jobs and it is compulsory to ensure that the consumptions do not exceed the limited capacities. In this paper, several criteria are involved, namely makespan, total job tardiness, and workload balancing level. Our problem is firstly solved by the non-dominated sorting genetic algorithm-II (NSGAII) as well as the recently proposed NSGAIII. Giving emphasis to the selection procedure, we apply both the traditional Pareto dominance and the less documented Lorenz dominance into the niching mechanism of NSGAIII. Hence, we adopt and modify L-NSGAII to our problem and propose L-NSGAIII by integrating the notion of Lorenz dominance. Our methods are tested by 1350 randomly generated instances, considering problems with 30–150 jobs and different configurations of resources and due dates. Hypervolume and C-metric are considered to evaluate the results. The Lorenz dominance leads the population more toward the ideal point. As experiments show, it allows improving the original NSGA approach.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3