EEG-based emotion recognition with deep convolutional neural networks

Author:

Ozdemir Mehmet Akif12ORCID,Degirmenci Murside1,Izci Elif1,Akan Aydin3

Affiliation:

1. Department of Biomedical Technologies , Izmir Katip Celebi University , Izmir , Turkey

2. Department of Biomedical Engineering , Izmir Katip Celebi University , Izmir , Turkey

3. Department of Electrical and Electronics Engineering , Izmir University of Economics , Izmir , Turkey

Abstract

Abstract The emotional state of people plays a key role in physiological and behavioral human interaction. Emotional state analysis entails many fields such as neuroscience, cognitive sciences, and biomedical engineering because the parameters of interest contain the complex neuronal activities of the brain. Electroencephalogram (EEG) signals are processed to communicate brain signals with external systems and make predictions over emotional states. This paper proposes a novel method for emotion recognition based on deep convolutional neural networks (CNNs) that are used to classify Valence, Arousal, Dominance, and Liking emotional states. Hence, a novel approach is proposed for emotion recognition with time series of multi-channel EEG signals from a Database for Emotion Analysis and Using Physiological Signals (DEAP). We propose a new approach to emotional state estimation utilizing CNN-based classification of multi-spectral topology images obtained from EEG signals. In contrast to most of the EEG-based approaches that eliminate spatial information of EEG signals, converting EEG signals into a sequence of multi-spectral topology images, temporal, spectral, and spatial information of EEG signals are preserved. The deep recurrent convolutional network is trained to learn important representations from a sequence of three-channel topographical images. We have achieved test accuracy of 90.62% for negative and positive Valence, 86.13% for high and low Arousal, 88.48% for high and low Dominance, and finally 86.23% for like–unlike. The evaluations of this method on emotion recognition problem revealed significant improvements in the classification accuracy when compared with other studies using deep neural networks (DNNs) and one-dimensional CNNs.

Funder

Izmir Katip Celebi University

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3