Machine learning-aided evaluation of oxidative strength of cold atmospheric plasma-treated water

Author:

Irmak Seyma EcemORCID,Ozdemir Gizem DilaraORCID,Ozdemir Mehmet AkifORCID,Ercan Utku KürşatORCID

Abstract

Abstract Plasma medicine is gaining attraction in the medical field, particularly the use of cold atmospheric plasma (CAP) in biomedicine. The chemistry of the plasma is complex, and the reactive oxygen species (ROS) within it are the basis for the biological effect of CAP on the target. Understanding how the oxidative power of ROS responds to diverse plasma parameters is vital for standardizing the effective application of CAP. The proven applicability of machine learning (ML) in the field of medicine is encouraging, as it can also be applied in the field of plasma medicine to correlate the oxidative strength of plasma-treated water (PTW) according to different parameters. In this study, plasma-treated water was mixed with potassium iodide-starch reagent for color formation that could be linked to the oxidative capacity of PTW. Corresponding images were captured resulting from the exposure of the color-forming agent to water treated with plasma for different time points. Several ML models were trained to distinguish the color changes sourced by the oxidative strength of ROS. The AdaBoost Classifier (ABC) algorithm demonstrated better performance among the classification models used by extracting color-based features from the images. Our results, with a test accuracy of 63.5%, might carry a potential for future standardization in the field of plasma medicine with an automated system that can be created to interpret the oxidative properties of ROS in different plasma treatment parameters via ML.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3