Rational design of nanocatalysts for ambient ammonia electrosynthesis

Author:

Wu Limin12,Guo Weiwei12,Sun Xiaofu12ORCID,Han Buxing123

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing , 100190 , China

2. School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing , 100049 , China

3. Shanghai Key Laboratory of Green Chemistry and Chemical Processes , School of Chemistry and Molecular Engineering, East China Normal University , Shanghai , 200062 , China

Abstract

Abstract Ammonia (NH3) is one of the key commercial chemicals and carbon-free energy carriers. It is mainly made by Haber-Bosch process under high temperature and high pressure, which consumes huge amount of energy and releases large amounts of CO2. Developing sustainable approaches to its production is of great importance. Powered by a renewable electricity source, electrochemical N2 reduction reaction (NRR) and nitrate reduction reaction (NITRR) are potential routes to synthesize NH3 under ambient conditions. This review summarizes major recent advances in the NRR and NITRR, especially for several years. Some fundamentals for NRR and NITRR are first introduced. Afterward, the design strategies of nanocatalysts are discussed, mainly focusing on nano-structure construction/nanoconfinement, doping/defects engineering and single-atom engineering. Finally, the critical challenges remaining in this research area and promising directions for future research are discussed.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3