Author:
Liu Hanle,Jia Shunhan,Wu Limin,He Lei,Sun Xiaofu,Han Buxing
Abstract
<p>The development of renewable-energy-powered electrocatalysis meets the need for the sustainable society. With water as the proton source, it enables efficient production of chemicals and fuels from renewable resources like CO<sub>2</sub>, N<sub>2</sub>, and NO<sub>x</sub> under ambient conditions. Hydrogen generated via water dissociation is a crucial participant in transforming reactants into desired products, but it also serves as a direct source of undesired reactions when in excess. In this review, we first present an overview of the functional mechanisms of active hydrogen in the electroreduction of CO<sub>2</sub>/N<sub>2</sub>/NO<sub>x</sub>. We then introduce a range of methods to enhance our understanding of these mechanisms. Furthermore, a detailed discussion of design strategies aimed at regulating active hydrogen in the reduction of CO<sub>2</sub>/N<sub>2</sub>/NO<sub>x</sub> is provided. Finally, an outlook on the critical challenges remaining in this research area and promising opportunities for future research is considered.</p>
Publisher
Innovation Press Co., Limited
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献