Congo red fluorescence upon binding to macromolecules – a possible explanation for the enhanced intensity

Author:

Zemanek Grzegorz,Jagusiak Anna,Chłopaś Katarzyna,Piekarska Barbara,Stopa Barbara

Abstract

AbstractThe present study attempts to explain the reason for the selective generation of an increase in intensity of Congo red (CR) fluorescence as an effect of the dye interacting with proteins and polysaccharides. This supramolecular dye, which creates ribbon-shaped micelles in aqueous solutions when excited with blue light (470 nm), presents low fluorescence with a maximum within the orange-red light range (approximately 600 nm). In the same conditions, CR-stained preparations of heat-denatured proteins, some native proteins (e.g. cell surface receptors) and cellulose show intense orange-red fluorescence when observed using a fluorescence microscope. The fluormetric measurements showed that the factors that cause the dissociation of the ribbon-shaped CR micelle – ethanol, urea, dimethyl sulfoxide (DMSO) and cholate – all contributed to a significant increase in the fluorescence intensity of the CR solutions. The fluorescence measurements of CR bound to the immunoglobulin light lambda (L λ) chain and soluble carboxymethyl cellulose (CMC) showed a fluorescence intensity which was many times higher. In the case of the denatured (65°C) immunoglobulin L λ chain, the fluorescence intensity significantly exceeded the values observed for the factors which break down the CR micelles. The dissociation of the ribbon-shaped micelles and the complexation of the monomeric CR form with polymers are two of the factors explaining the intense fluorescence of protein and polysaccharide preparations stained with CR.

Publisher

Walter de Gruyter GmbH

Subject

Health Informatics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous),General Computer Science

Reference70 articles.

1. The structure and protein binding of amyloid-specific dye reagents;Acta Biochim Pol,2003

2. The structure and protein binding of amyloid-specific dye reagents;Acta Biochim Pol,2003

3. Effect of urea on the structural dynamics of water;Proc Natl Acad Sci USA,2006

4. Why Congo red binding is specific for amyloid proteins – model studies and a computer analysis approach;Med Sci Monit,2001

5. The use of supramolecular structures as protein ligands;J Mol Model,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3