A high throughput assay of lichenase activity with Congo red dye in plants

Author:

Tyurin Alexander A.ORCID,Suhorukova Aleksandra V.,Deineko Igor V.,Pavlenko Olga S.,Fridman Viktoriia A.,Goldenkova-Pavlova Irina V.

Abstract

Abstract Background Since the beginning of the use of reporter proteins for expression analysis, a variety of approaches have been developed and proposed; both qualitative and quantitative. The lack of simple methods for direct observation of gene expression in living organisms makes it necessary to continue to propose new methods. In this work, we consider a method for the quantitative analysis of the expression of thermostable lichenase from Clostridium thermocellum used as a sensitive reporter protein. Results In this study, we report the design a high throughput fluorometric method for quantification of thermostable lichenase C. thermocellum using Congo red and further experimental verification of its relevance and efficiency in assessment of the functional role of regulatory sequences in the plant cell. Conclusions The specific interaction between the dye Congo red and $$\beta$$ β -d-glucans formed the background for designing a high-throughput fluorometric assay for quantification of C. thermocellum thermostable lichenase as a reporter protein for plants. This assay (i) makes it possible to precisely measure the amount of reporter protein in a plant sample; (ii) has shown a high sensitivity for quantification of thermostable lichenase; (iii) is more time- and cost-efficient as compared with the Somogyi–Nelson assay; and (iv) is to the least degree dependent on the presence of the tested buffer components as compared with the Somogyi–Nelson assay.

Funder

ministry of science and higher education of the russian federation

russian science foundation

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3