Fractional-order susceptible-infected model: Definition and applications to the study of COVID-19 main protease

Author:

Abadias Luciano12,Estrada-Rodriguez Gissell3,Estrada Ernesto24

Affiliation:

1. Departamento de Matemáticas , Facultad de Ciencias Universidad de Zaragoza , 50009 , Zaragoza , Spain

2. Instituto Universitario de Matemáticas y Aplicaciones , Universidad de Zaragoza , 50009 , Zaragoza , Spain

3. Laboratoire Jacques-Louis Lions , Université Pierre-et-Marie-Curie (UPMC) , 4 place Jussieu, 75005 , Paris , France

4. ARAID Foundation, Government of Aragón , 50018 , Zaragoza , Spain

Abstract

Abstract We propose a model for the transmission of perturbations across the amino acids of a protein represented as an interaction network. The dynamics consists of a Susceptible-Infected (SI) model based on the Caputo fractional-order derivative. We find an upper bound to the analytical solution of this model which represents the worse-case scenario on the propagation of perturbations across a protein residue network. This upper bound is expressed in terms of Mittag-Leffler functions of the adjacency matrix of the network of inter-amino acids interactions. We then apply this model to the analysis of the propagation of perturbations produced by inhibitors of the main protease of SARS CoV-2. We find that the perturbations produced by strong inhibitors of the protease are propagated far away from the binding site, confirming the long-range nature of intra-protein communication. On the contrary, the weakest inhibitors only transmit their perturbations across a close environment around the binding site. These findings may help to the design of drug candidates against this new coronavirus.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference40 articles.

1. Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47 (2019), 520–528.

2. L. Abadias, E. Álvarez, Uniform stability for fractional Cauchy problems and applications. Topol. Methods Nonlinear Anal. 52, No 2 (2018), 707–728.

3. L. Abadias, C. Lizama, P.J. Miana, Sharp extensions and algebraic properties for solutions families of vector-valued differential equations. Banach J. Math. Anal. 10, No 1 (2016), 169–208.

4. C.N. Angstmann, A.M. Erickson, B.I. Henry, A.V. McGann, J.M. Murray, J. A. Nichols. Fractional order compartment models. SIAM J. Appl. Math. 77, No 2 (2017), 430–446.

5. E. Bajlekova, The abstract Cauchy problem for the fractional evolution equation. Fract. Calc. Appl. Anal. 1, No 3 (1998), 255–270.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3