Affiliation:
1. 2Département de mathématiques, Université du Québec à Montréal, 201 avenue du Président-Kennedy PK-5151, Montréal, Quebec H2X 3Y7, Canada
Abstract
AbstractEstimating causal exposure effects in observational studies ideally requires the analyst to have a vast knowledge of the domain of application. Investigators often bypass difficulties related to the identification and selection of confounders through the use of fully adjusted outcome regression models. However, since such models likely contain more covariates than required, the variance of the regression coefficient for exposure may be unnecessarily large. Instead of using a fully adjusted model, model selection can be attempted. Most classical statistical model selection approaches, such as Bayesian model averaging, do not readily address causal effect estimation. We present a new model averaged approach to causal inference, Bayesian causal effect estimation (BCEE), which is motivated by the graphical framework for causal inference. BCEE aims to unbiasedly estimate the causal effect of a continuous exposure on a continuous outcome while being more efficient than a fully adjusted approach.
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献