Invited Commentary: The Promise and Pitfalls of Causal Inference With Multivariate Environmental Exposures

Author:

Zigler Corwin M

Abstract

Abstract The accompanying article by Keil et al. (Am J Epidemiol. 2021;190(12):2647–2657) deploys Bayesian g-computation to investigate the causal effect of 6 airborne metal exposures linked to power-plant emissions on birth weight. In so doing, it articulates the potential value of framing the analysis of environmental mixtures as an explicit contrast between exposure distributions that might arise in response to a well-defined intervention—here, the decommissioning of coal plants. Framing the mixture analysis as that of an approximate “target trial” is an important approach that deserves incorporation into the already rich literature on the analysis of environmental mixtures. However, its deployment in the power plant example highlights challenges that can arise when the target trial is at odds with the exposure distribution observed in the data, a discordance that seems particularly difficult in studies of environmental mixtures. Bayesian methodology such as model averaging and informative priors can help, but they are ultimately limited for overcoming this salient challenge.

Funder

National Institute of Environmental Health Sciences

Publisher

Oxford University Press (OUP)

Subject

Epidemiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3