Affiliation:
1. Dipartimento di Matematica e Informatica, Università degli Studi di Perugia , 06123 Perugia , Italy
2. School of Mathematical Sciences, Chongqing Normal University , Chongqing 401331 , P. R. China
Abstract
Abstract
This article is devoted to the study of the combined effects of logarithmic and critical nonlinearities for the Kirchhoff-Poisson system
−
M
∫
Ω
∣
∇
H
u
∣
2
d
ξ
Δ
H
u
+
μ
ϕ
u
=
λ
∣
u
∣
q
−
2
u
ln
∣
u
∣
2
+
∣
u
∣
2
u
in
Ω
,
−
Δ
H
ϕ
=
u
2
in
Ω
,
u
=
ϕ
=
0
on
∂
Ω
,
\left\{\begin{array}{ll}-M\left(\mathop{\displaystyle \int }\limits_{\Omega }| {\nabla }_{H}u{| }^{2}{\rm{d}}\xi \right){\Delta }_{H}u+\mu \phi u=\lambda | u{| }^{q-2}u\mathrm{ln}| u{| }^{2}+| u{| }^{2}u& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ -{\Delta }_{H}\phi ={u}^{2}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=\phi =0& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial \Omega ,\end{array}\right.
where
Δ
H
{\Delta }_{H}
is the Kohn-Laplacian operator in the first Heisenberg group
H
1
{{\mathbb{H}}}^{1}
,
Ω
\Omega
is a smooth bounded domain of
H
1
{{\mathbb{H}}}^{1}
,
q
∈
(
2
θ
,
4
)
q\in \left(2\theta ,4)
,
μ
∈
R
\mu \in {\mathbb{R}}
, and
λ
>
0
\lambda \gt 0
are some real parameters. Under suitable assumptions on the Kirchhoff function
M
M
, which cover the degenerate case, we prove the existence of nontrivial solutions for the above problem when
λ
>
0
\lambda \gt 0
is sufficiently large. Moreover, our results are new even in the Euclidean case.
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference27 articles.
1. A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.
2. Y. An, and H. Liu, The Schrödinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group, Israel J. Math. 235 (2020), no. 1, 385–411.
3. J. M. Bony, Principe.du. Maximum, Inégalité de Harnack et unicité du problème de Cauchy pour les operateurs elliptiques dégénérés, Annales de LaInstitut Fourier 19 (1969), 277–304.
4. S. Bordoni, R. Filippucci, and P. Pucci, Existence problems on Heisenberg groups involving Hardy and critical terms, J. Geom. Anal. 30 (2020), no. 2, 1887–1917.
5. L. Capogna, D. Danielli, S. D. Pauls, and J. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, vol. 259, Birkhäuser Verlag, Basel, 2007.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献