Author:
Tian Guaiqi,An Yucheng,Suo Hongmin
Abstract
AbstractIn this work, we study the following Schrödinger-Poisson system $$ \textstyle\begin{cases} -\Delta _{H}u+\mu \phi u=\lambda u^{-\gamma}, &\text{in } \Omega , \\ -\Delta _{H}\phi =u^{2}, &\text{in } \Omega , \\ u>0, &\text{in } \Omega , \\ u=\phi =0, &\text{on } \partial \Omega , \end{cases} $$
{
−
Δ
H
u
+
μ
ϕ
u
=
λ
u
−
γ
,
in
Ω
,
−
Δ
H
ϕ
=
u
2
,
in
Ω
,
u
>
0
,
in
Ω
,
u
=
ϕ
=
0
,
on
∂
Ω
,
where $\Delta _{H}$
Δ
H
is the Kohn-Laplacian on the first Heisenberg group $\mathbb{H}^{1}$
H
1
, and $\Omega \subset \mathbb{H}^{1}$
Ω
⊂
H
1
is a smooth bounded domain, $\mu =\pm 1$
μ
=
±
1
, $0<\gamma <1$
0
<
γ
<
1
, and $\lambda >0$
λ
>
0
are some real parameters. For the above system, we prove the existence and uniqueness of positive solution for $\mu =1$
μ
=
1
and each $\lambda >0$
λ
>
0
. Multiple solutions of the system are also considered for $\mu =-1$
μ
=
−
1
and $\lambda >0$
λ
>
0
small enough using the critical point theory for nonsmooth functional.
Funder
The Science and Technology Project of Bijie
Publisher
Springer Science and Business Media LLC