Affiliation:
1. School of Mathematics and Statistics, Beijing Institute of Technology , Beijing 100081 , P. R. China
2. School of Mathematical Sciences, Jiangsu University , Zhenjiang , 212013 , P. R. China
Abstract
Abstract
Let
I
I
be a bounded interval of
R
{\mathbb{R}}
and
λ
1
(
I
)
{\lambda }_{1}\left(I)
denote the first eigenvalue of the nonlocal operator
(
−
Δ
)
1
4
{(-\Delta )}^{\tfrac{1}{4}}
with the Dirichlet boundary. We prove that for any
0
⩽
α
<
λ
1
(
I
)
0\leqslant \alpha \lt {\lambda }_{1}(I)
, there holds
sup
u
∈
W
0
1
2
,
2
(
I
)
,
‖
(
−
Δ
)
1
4
u
‖
2
2
−
α
∥
u
∥
2
2
≤
1
∫
I
e
π
u
2
d
x
<
+
∞
,
\mathop{\sup }\limits_{u\in {W}_{0}^{\frac{1}{2},2}(I),\Vert {\left(-\Delta )}^{\tfrac{1}{4}}u{\Vert }_{2}^{2}-\alpha {\parallel u\parallel }_{2}^{2}\le 1}\mathop{\int }\limits_{I}{e}^{\pi {u}^{2}}{\rm{d}}x\lt +\infty ,
and the supremum can be attained. The method is based on concentration-compactness principle for fractional Trudinger-Moser inequality, blow-up analysis for fractional elliptic equation with the critical exponential growth and harmonic extensions.
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference38 articles.
1. D. R. Adams, A sharp inequality of J. Moser for higher-order derivatives, Ann. Math. 128 (1988), 385–398.
2. Adimurthi and O. Druet, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Comm. Partial Differential Equations 29 (2004), 295–322.
3. L. Carleson and A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. 110 (1986), 113–127.
4. R. Černý, A. Cianchi, and S. Hencl, Concentration-compactness principles for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. 192 (2013), 225–243.
5. L. Chen, G. Lu, and M. Zhu, Sharpened Trudinger-Moser inequalities on the Euclidean space and Heisenberg group, J. Geom. Anal. 31 (2021), no. 12, 12155–12181.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献