Existence of ground states to quasi-linear Schrödinger equations with critical exponential growth involving different potentials

Author:

Zhang Caifeng1,Zhu Maochun2

Affiliation:

1. Department of Applied Mathematics, School of Mathematics and Physics , University of Science and Technology of Beijing , Beijing , 100083 , P.R. China

2. School of Mathematics and Statistics , Nanjing University of Science and Technology , Nanjing , 210094 , P.R. China

Abstract

Abstract The purpose of this paper is three-fold. First, we establish singular Trudinger–Moser inequalities with less restrictive constraint: (0.1) sup u H 1 ( R 2 ) , R 2 ( | u | 2 + V ( x ) u 2 ) d x 1 R 2 e 4 π 1 β 2 u 2 1 | x | β d x < + , $$\underset{u\in {H}^{1}\left({\mathbb{R}}^{2}\right),\underset{{\mathbb{R}}^{2}}{\int }\left(\vert \nabla u{\vert }^{2}+V\left(x\right){u}^{2}\right)\mathrm{d}x\le 1}{\mathrm{sup}}\underset{{\mathbb{R}}^{2}}{\int }\frac{{e}^{4\pi \left(1-\frac{\beta }{2}\right){u}^{2}}-1}{\vert x{\vert }^{\beta }}\mathrm{d}x{< }+\infty ,$$ where 0 < β < 2 $0{< }\beta {< }2$ , V ( x ) 0 $V\left(x\right)\ge 0$ and may vanish on an open set in R 2 ${\mathbb{R}}^{2}$ . Second, we consider the existence of ground states to the following Schrödinger equations with critical exponential growth in R 2 ${\mathbb{R}}^{2}$ : (0.2) Δ u + γ u = f ( u ) | x | β , $$-{\Delta}u+\gamma u=\frac{f\left(u\right)}{\vert x{\vert }^{\beta }},$$ where the nonlinearity f $f$ has the critical exponential growth. In order to overcome the lack of compactness, we develop a method which is based on the threshold of the least energy, an embedding theorem introduced in (C. Zhang and L. Chen, “Concentration-compactness principle of singular Trudinger-Moser inequalities in R n ${\mathbb{R}}^{n}$ and n $n$ -Laplace equations,” Adv. Nonlinear Stud., vol. 18, no. 3, pp. 567–585, 2018) and the Nehari manifold to get the existence of ground states. Furthermore, as an application of inequality (0.1), we also prove the existence of ground states to the following equations involving degenerate potentials in R 2 ${\mathbb{R}}^{2}$ : (0.3) Δ u + V ( x ) u = f ( u ) | x | β . $$-{\Delta}u+V\left(x\right)u=\frac{f\left(u\right)}{\vert x{\vert }^{\beta }}.$$

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Reference37 articles.

1. N. S. Trudinger, “On imbeddings into Orlicz spaces and some applications,” J. Math. Mech., vol. 17, no. 5, pp. 473–483, 1967. https://doi.org/10.1512/iumj.1968.17.17028.

2. S. I. Pohozaev, “The Sobolev embedding in the special case pl=n$pl=n$,” in Proceeding of the Technical Scientific Conference on Advances of Scientific Research 1964–1965, vol. 165, Moscow, Mathematics Sections Moscov. Eberget. Inst., 1965, pp. 158–170.

3. V. I. Yudovic, “Some estimates connected with integral operators and with solutions of elliptic equations,” Dokl. Akad. Nauk SSSR, vol. 138, pp. 805–808, 1961.

4. J. Moser, “A sharp form of an inequality by N. Trudinger,” Indiana Univ. Math. J., vol. 20, pp. 1077–1092, 1970. https://doi.org/10.1512/iumj.1971.20.20101.

5. D. Cao, “Nontrivial solution of semilinear elliptic equation with critical exponent in R2${\mathbb{R}}^{2}$,” Commun. Partial Differ. Equ., vol. 17, nos. 3–4, pp. 407–435, 1992. https://doi.org/10.1080/03605309208820848.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3