Hydrogen blending in existing natural gas transmission pipelines: a review of hydrogen embrittlement, governing codes, and life prediction methods

Author:

Kappes Mariano A.123ORCID,Perez Teresa14

Affiliation:

1. Instituto Sabato, UNSAM/CNEA , Av. General Paz 1499 , San Martín , Buenos Aires B1650KNA , Argentina

2. National Commission of Atomic Energy of Argentina , Av. General Paz 1499 , San Martín , Buenos Aires B1650KNA , Argentina

3. National Scientific and Technical Research Council , Godoy Cruz, 2290 , Buenos Aires C1425FQB , Argentina

4. TEP Consultora SRL , Buenos Aires , Argentina

Abstract

Abstract Existing natural gas pipelines provide an economic alternative for the transport of hydrogen (H2) in an envisioned hydrogen economy. Hydrogen can dissolve in the steel and cause hydrogen embrittlement (HE), compromising pipeline structural integrity. HE causes subcritical cracking, decreases ductility and fracture toughness, and increases the fatigue crack growth rate (FCGR). This work analyzes the testing standards in gaseous hydrogen used to quantify those effects. Design code ASME B31.12 applicable to hydrogen pipelines has more stringent requirements than ASME B31.8 code commonly used for constructing natural gas pipelines. Differences in materials requirements specified by those codes are summarized. ASME B31.12 pipeline code applies for H2 at a concentration greater than 10% molar. However, recent testing programs acknowledge that H2 degrades steel mechanical properties regardless of its percentage in the blend. This paper discusses how the hydrogen degraded mechanical properties affect pipeline integrity. Decreased mechanical properties cause a drop in the failure pressure of a flawed pipeline, calculated following a fitness for service methodology. There is an increasing risk of subcritical crack growth in H2 as the hardness of base metal and welds increases. This paper analyzes where zones with high hardness and susceptible microstructures are expected in existing pipelines.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Reference126 articles.

1. ACER (2020). Report on NRAs survey – hydrogen, biomethane, and related network adaptations, evaluation of responses. Report, European Union Agency for the Cooperation of Energy Regulators.

2. AGN (2021). Hydrogen Park South Australia, Available at: https://blendedgas.agn.com.au/about-the-project (Accessed 12 December 2022).

3. Air Liquide (2005). Questions and issues on hydrogen pipelines, pipeline transmission of hydrogen, Available at: https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/hpwgw_questissues_campbell.pdf (Accessed 12 December 2022).

4. Amaro, R.L., White, R.M., Looney, C.P., Drexler, E.S., and Slifka, A.J. (2018). Development of a model for hydrogen-assisted fatigue crack growth in pipeline steel. ASME J. Pressure Vessel Technol. 140: 021403-1–021403-13.

5. Anderson, T.L. (2005). Fracture mechanics: fundamentals and applications, 4th ed. CRC Press Taylor & Francis Group, Boca Raton, FL.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3