Organic compounds as corrosion inhibitors for reinforced concrete: a review

Author:

Alvarez Leonardo X.1ORCID,Troconis de Rincón Oladis2,Escribano Jorge2,Rincon Troconis Brendy C.23ORCID

Affiliation:

1. Laboratorio de Química Verde, Escuela de Química , Universidad de Costa Rica , Ciudad Universitaria Rodrigo Facio , San Pedro de Montes de Oca 11501 , Costa Rica

2. School of Civil & Environmental Engineering and Construction Management , University of Texas at San Antonio , San Antonio , TX 78249 , USA

3. Department of Mechanical Engineering , The University of Texas at San Antonio , San Antonio , TX 78249 , USA

Abstract

Abstract With the goal of preventing concrete deterioration by means of destructive corrosion processes, the use of single organic compounds or mixtures as organic corrosion inhibitors (OCIs) instead of inorganic chemicals is becoming a very attractive practice. As OCIs are more ecologically friendly in their production and environmental fate, they have several advantages over well-known inorganic additives such as metallic nitrites, chromates, or arsenates. In this article, the application of different single organic compounds (of either natural or synthetic origin) as well as mixtures that have been used to lengthen the lifespan of concrete structures is reviewed. After a small exemplification of the use of single organic compounds bearing amino, hydroxy, formyl, or carboxylic functionalities, the more often used OCIs are reviewed according to their principal functional group. Afterward, the application of compound mixtures of either synthetic or natural origin, the use of natural extracts, and biomass are surveyed. Finally, the effects of functional groups within the top 10 inhibitor molecules, the toxicity of OCIs, their effects on the physical-mechanical properties of concrete, and their long-term performance are discussed.

Funder

Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3