Investigating the Corrosion Inhibition Mechanisms of Alkanolammonium Salts: A Case Study with Ethylethanolammonium 4-Nitrobenzoate on Carbon Steel in Saline Solution

Author:

Crisan Manuela1ORCID,Muntean Cornelia2ORCID,Chumakov Yurii3,Plesu Nicoleta1ORCID

Affiliation:

1. “Coriolan Dragulescu” Institute of Chemistry, 300223 Timisoara, Romania

2. Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Polytechnic University of Timişoara, 300223 Timisoara, Romania

3. Institute of Applied Physics, Academiei 5, MD-2028 Chisinau, Moldova

Abstract

This study explores the potential corrosion inhibition mechanisms of alkanolammonium salts, exemplified by ethylethanolammonium 4-nitrobenzoate (EEA4NB), for carbon steel, utilizing experimental and theoretical methods. The interactions between metal and inhibitor, focusing on adsorption behavior in saline solutions, will be thoroughly investigated. Analysis of potentiodynamic polarization curves and electrochemical impedance spectroscopy reveals that the inhibition efficiency (IE) increases with the rising concentration of EEA4NB, reaching 96% at 5 × 10−3 M. Negative adsorption free energy and a high adsorption equilibrium constant suggest the spontaneous formation of a protective inhibitor layer on the metal surface, effectively blocking reaction sites and reducing the corrosion rate, according to the Langmuir isotherms model. As confirmed by scanning electron microscopy, physical and chemical interactions contribute to the adsorption mechanisms. Quantum chemical calculations explore the relationship between EEA4NB molecular configuration and inhibition efficiencies. The study emphasizes the potential efficacy of alkanolammonium salts, exemplified by EEA4NB, as effective corrosion inhibitors for carbon steel in aggressive environments.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3