Stress corrosion cracking and precipitation strengthening mechanism in TWIP steels: progress and prospects

Author:

Olugbade Temitope Olumide1ORCID

Affiliation:

1. Department of Industrial and Production Engineering , Federal University of Technology , P.M.B. 704 , Akure , Ondo State , Nigeria

Abstract

Abstract Twinning-induced plasticity (TWIP) steels are increasingly receiving wide attention for automotive applications due to their outstanding combination of ductility and strength, which can largely be attributed to the strain hardening effect, formation of mechanical twins during straining, and the presence of manganese (Mn) as an alloying element. However, the premature cracking and sudden failure frequently experienced by the TWIP steels under the combined action of tensile stress and corrosion environment remain a challenge for many material scientists and experts up till now. Driven by this challenge, an overview of the stress corrosion cracking (SCC) susceptibility of high-Mn TWIP steels (under the action of both mechanical loading and corrosion reaction) is presented. The SCC susceptibility of the high-Mn TWIP steels is specifically sensitive to hydrogen embrittlement, which is a major factor influencing the SCC behavior, and is a function of the hydrogen content, lattice-defect density and strength level. Besides, the corrosion susceptibility to hydrogen embrittlement may be reduced by suppressing the martensite in the TWIP steels by carbon additions. This review further discusses in detail the precipitation strengthening mechanisms as well as the corrosion behavior of TWIP steel by mechanism.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3