Strengthening and precipitation hardening mechanisms of surface-mechanically treated 17-4PH stainless steel

Author:

Olugbade Temitope Olumide,Oladapo Bankole I.,Zhao Qi,Ting Tin Tin

Abstract

AbstractAchieving ultra-high strength without sacrificing too much ductility is the focus of attention in nanostructured materials. Here, the strengthening mechanism and property enhancement of surface-mechanically treated 17-4PH stainless steel (SS17-4PH) were investigated. Our findings show that a grain refinement and elongated lath-like martensitic grain (~ 50 nm thick) could be produced after surface treatment. The grain size remains in the nanoscale, and random crystallographic orientations with the presence of nanocrystallites characterize the nanocrystalline grains formed on the treated sample. This contributes to the property enhancement with a yield strength of about 901 MPa and a reduced elongation to failure of about 17%. The atom probe tomography (APT) characterization unveiled the emergence of high-density precipitate (Cu-rich) at the material surface, with a number density of about 2.6255 × 1024 m−3 and an average radius of 2.22 nm. Besides, the dislocation activities caused by SMAT result in the gradual breakdown of precipitates into smaller sizes and final dissolution in the matrix, increasing the number of nucleation sites and leading to more grain refinement processes. The grain boundary, dislocation densities, and the Cu-rich precipitate greatly influence the strengthening mechanism of surface-treated SS17-4PH.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Superior strength and wear resistance of mechanically deformed High-Mn TWIP steel;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3