Affiliation:
1. Department of Mechanical Engineering , Techno College of Engineering , Agartala , Tripura 799004 , India
2. Department of Mechanical Engineering , National Institute of Technology Silchar , Silchar , Assam 788010 , India
Abstract
Abstract
Natural fibers have received a lot of attention from academia as well as industry in the context of sustainable materials. Since they are more environmentally friendly than traditional synthetic materials, their physico-mechanical and frictional properties such as porosity, moisture absorption, high strength, modulus, toughness, and wear resistivity make them appropriate for a variety of industrialized applications where issues involving a significant quantity of dumping must be taken into account. The paper introduces an attempt to use epoxy-based composites reinforced with wood dust for various applications. The composites are prepared with various wood filler stacks (0, 2.5, 5, 7.5, 10, and 12.5 wt%) embedded with epoxy resin and subjected to tensile and flexural testing. The highest ultimate tensile strength achieved at 7.5 wt% wood dust support is 22 MPa, whereas the highest flexural modulus is 0.48 GPa at 12.5 wt% composites. The composite’s wear properties is examined under dry, wet, and heated contact conditions using a pin-on-disk (POD) machine. In dry condition, coefficient of friction (COF) varies from 0.10 to 0.38 whereas, in wet condition, the value of COF decreased by 70–83 %. In heated state, the COF is increased by up to 15 % when varying the temperature from 40 °C to 80 °C. The composite exhibits better wear behavior in the lower filler support than in the higher filler support due to the sturdy connection between the matrix and filler. On the other hand, the wet state’s tribological performance is superior to the dry and heated states. During surface morphology analysis, it is found that various voids, crack formation, wear debris, and thin transfer layer formation take place on the composite.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献